
J O U R N A L O F M A T E R I A L S S C I E N C E 3 6 (2 0 0 1 ) 5131 – 5135
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The pore radius distribution in near-planar stochastic fibre networks is known to be
influenced by changes in the mean number of fibres per unit area and their distribution in
the plane. Experimental data is presented that confirms the established result that the
standard deviation of pore radii is proportional to the mean. The data shows also that this
proportionality is the same for changes in the number of fibres per unit area and for
changes in the uniformity of their in-plane distribution. Data from the literature suggests
that processes that increase the mean pore radius, increase also the coefficient of variation
of pore radii. Theoretical considerations and experimental data are presented that show
that the coefficient of variation of pore radii is in fact constant for near-random and
non-random stochastic fibre networks. C© 2001 Kluwer Academic Publishers

1. Introduction
The pore radius distribution in near-planar stochastic
fibre networks such as paper, nonwoven fabrics, glass
fibre filter mats, etc. is known to have a positive skew
and to be well described by the lognormal or gamma
distributions [1, 2]. Such networks typically have thick-
ness many times less than a fibre length and the term
‘near-planar’ is applied here since a characteristic of
their structure is that it is essentially layered with fibre
axes oriented within only a few degrees of the network
plane [3]. Measurements of the pore radius distribution,
using displacement of fluid perpendicular to the plane
of the network, have been presented by Bliesner [4]
and Corte and Lloyd [1] for laboratory formed paper
sheets. The mean areal density of a sheet is defined as
the mean mass per unit area and for a given fibre type
is determined by the mean number of fibres per unit
area. Bliesner varied the mean areal density of sheets,
and Corte and Lloyd varied the uniformity of the sheets
at a constant mean areal density. This second property
of fibre networks is important because commercially
formed fibre networks exhibit a range of degrees of
mass uniformity arising as a consequence of the inter-
action and agglomeration of fibres in the suspensions
from which networks are formed.

The distribution of local averages of areal density,
in random fibre networks, i.e. those with fibre centres
distributed according to a two dimensional Poisson pro-
cess and with uniformly distributed fibre axis orienta-
tions, were derived by Dodson [5]. It turns out that com-
mercial fibre networks exhibit a broader distribution of
local averages of areal density than that determined for
random networks composed of the same constituent
fibres [6].

The standard deviation of pore radii is plotted against
the mean pore radius for the data of Corte and Lloyd [1]

and those of Bliesner [4] in Fig. 1. The legends refer to
the shape of the data markers and grey-shaded markers
represent data for samples formed by the lamination of
thin layers; such samples therefore have been formed
by a discontinuous method and fall away from the over-
all trend. It is immediately apparent that the standard
deviation of pore radii is proportional to the mean for
changes in mean network areal density and its distribu-
tion. The coefficient of variation of pore radii is plotted
against the mean in Fig. 2 for the same data; we note that
processes that increase the mean pore radius, increase
also the coefficient of variation of pore radii.

In a simulation study, Piekaar and Clarenburg [7]
found the polygon area distribution in random line net-
works to be well approximated by a lognormal distribu-
tion; the standard deviation of pore areas was observed
to be insensitive to the mean pore area as influenced
by the number of lines per unit area. Expressions for
the pore radius distribution in random fibre networks
were derived by Corte and Lloyd [1]. Using the estab-
lished results that for a random network of lines the
mean number of sides per polygon is four and the dis-
tances between crossings are distributed according to
the negative exponential distribution [8], they derived
the probability density function for rectangular pore
areas and hence that for the radii of circles having the
same area. Their derivation showed, in agreement with
experimental observation, the pore radius distribution
to be lognormal in shape and the standard deviation of
pore radii to be proportional to the mean such that
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Figure 1 Standard deviation of pore radii plotted against mean pore
radius. Data of Corte and Lloyd [1] for hardwood (HW) and softwood
(SW) fibres and that of Bliesner [4]. Both data sets exhibit linearity and
a negative intercept with the ordinate.

Figure 2 Coefficient of variation of pore radii plotted against mean pore
radius. Data of Corte and Lloyd [1] for hardwood (HW) and softwood
(SW) fibres and that of Bliesner [4]; increasing the mean pore radius
increases also the coefficient of variation of pore radii.
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where r̄ is the mean pore radius (µm), σ (r ) is the
standard deviation of pore radii (µm) and parameter
b (µm−1) characterises the negative exponential dis-
tribution with mean 1/b and variance 1/b2. It follows
from Equation 3 that for random networks the coef-
ficient of variation of pore radii is independent of the
mean, in agreement with the observations of Piekaar
and Clarenburg for pore areas.

Such good agreement between the theory of Corte
and Lloyd and their experiments is somewhat surpris-
ing however as, by changing the structural uniformity
of the networks they studied, thay had ensured that
their networks were non-random. This was addressed
by Dodson and Sampson [2] who rederived the the-
ory of Corte and Lloyd using the gamma distribution to
represent the distances between crossings in a fibre net-
work. The gamma distribution has probability density
function:

f (x) = bk

�(k)
xk−1e−bx for k > 0, (4)

where parameter k is a shape factor and parameter b is a
scale factor such that the distribution has mean, x̄ = k/b
and variance, σ 2(x) = k/b2; the negative exponential
distribution is a special case of the gamma distribution
when k = 1. On this basis, Dodson and Sampson give
the probability density function for pore radii as,

g(r ) = 4 b2kπ kr2k−1 K0(z)

�(k)2
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where z = 2br
√

π and K0(z) is the zeroth order modi-
fied Bessel function of the second kind. The mean and
standard deviation of pore radii are given by,
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Thus, the mean and variance of pore radii, are char-
acterised by the two parameters of the gamma distri-
bution. We note that the probability density function
given by Equation 5 is itself closely approximated by
a gamma distribution with k �→ 1

2 ((16k2 + 1)
1
2 − 1) and

b �→ 2b
√

π ; also, in comparison with the distributions
of Corte and Lloyd [1] and those of Bliesner [4], the
pore radius distribution given by Equation 5 exhibited
similar shape and skewness to a lognormal distribution
with the same mean and variance. It follows directly
from Equation 7 that the coefficient of variation of pore
radii for non-random networks is dependent only on
the parameter k; importantly, the pore radius theory
of Dodson and Sampson includes the model of Corte
and Lloyd for random networks as a special case when
k = 1, such that Equation 7 recovers Equation 3.

The appropriateness of the gamma distribution to
characterise pore radii in non-random fibre networks
is reinforced by the recent work of Castro and Ostoja-
Starzewski [9] who showed that the area-frequency of
the radii of inscribed circles touching three sides of
a polygon in a random fibre network are gamma dis-
tributed. Note also that the number frequency of in-
scribed circle radii in a random network was shown
by Miles [8] to have a negative exponential distribu-
tion and that the gamma distribution has been shown
recently to describe well the pore radius distribution in
granular packings [10, 11].

Here existing theory is revisited and it is shown that
the coefficient of variation of pore radii is, contrary to
the accepted view, constant for changes in the number of
fibres per unit area and the degree of spatial uniformity
of their organisation. Experimental data to support this
statement is presented.

2. Theory
Given an affine relationship between the standard de-
viations and mean values of a random variable, y in
a system, the coefficient of variation of that variable
is defined by the gradient and the standard deviation
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observed when the mean value is zero.

σ (y) = mȳ + σ0(y) (8)

where σ0(y) is the standard deviation observed at ȳ = 0.
The coefficient of variation is given by

CV (y) = m + σ0(y)

ȳ
. (9)

Since the standard deviation of y is given by the square
root of the variance, it must, by definition take real
and positive values. Now, a real random variable with
mean value zero can have a positive standard deviation
if and only if it may take negative values. The variable
of interest here is the pore radius r and, since r > 0 we
expect that as the mean pore radius tends to zero, so
does the standard deviation of pore radii.

As discussed previously, the pore radius distribution
in near-planar fibre networks has a positive skew and is
well described by the lognormal and the gamma distri-
butions. For gamma distributed pore radii, we have
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b
, (10)

σ (r ) =
√

k

b
, (11)
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Since the gamma distribution holds for k > 0 we have,

r̄ → 0 as b → ∞
σ (r ) → 0 as r̄ → 0

For lognormally distributed pore radii, we have
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2 +µ, (13)
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and therefore,

r̄ → 0 as µ → −∞
σ (r ) → 0 as r̄ → 0

Thus, for the two distributions commonly used to char-
acterise the pore radius distribution in stochastic porous
materials, σ0(r ) is zero.

Accepting that the relationship between the mean
pore radius and the standard deviation of pore radii is
linear for changes in mean network areal density and
structural uniformity, the treatment given above sug-
gests strongly that the coefficient of variation of pore
radii is constant and equal to the gradient, m. For the
gamma distribution we have CV (r ) = 1/

√
k and for

the lognormal distribution we have CV (r ) =
√

eσ 2 − 1.
The increase in the coefficient of variation of pore radii
observed with increasing mean pore radius by Corte and
Lloyd and Bliesner and plotted in Fig. 2 is attributable
to the negative values of σ0(r ) obtained for their data.

TABLE I Properties of fibres used to prepare networks

Mean width Mean length Linear density
µm mm gm−1 × 104

TMP 36.5 1.98 2.22
Chem. 38.7 2.41 1.16

3. Experimental
Samples of stochastic fibre networks were formed with
mean areal densities of 20 gm−2, 40 gm−2 and 60 gm−2

using natural cellulose fibres obtained from differ-
ent woods treated by two different processes, thermo-
mechanical (TMP) and chemical (Chem); samples were
made also from a 50 : 50 blend of the two types. Samples
were formed by filtration of a suspension over a stan-
dard woven wire fabric in a British Standard Handsheet
Former; this equipment conforms to international stan-
dards for forming paper in the laboratory and is de-
scribed in [12]. The fibres were chosen for their differ-
ent morphologies and these are summarised in Table I.
The linear density of a fibre is defined as its expected
mass per unit length, so at a given mean areal density,
networks formed from the Chemical fibres will have
more constituent fibres per unit area than those formed
from the TMP fibres.

The mass distribution in the networks was altered
by forming at different mass concentrations in the sus-
pension and by allowing time for the fibres in suspen-
sion partially to sediment before filtration. Both mech-
anisms allowed increased potential for fibre interaction
in suspension and hence increased nonuniformity in
the formed network. It should be noted that one set
of networks for each fibre type and for the blend was
formed using the mass concentrations and sedimenta-
tion times described in [12]; these conditions are known
to produce networks with an approximately Gaussian
distribution of mass density at the 1 mm scale close to
that of a random fibre network formed from the same
constituent fibres [6]. The degree of fibre interaction in
suspension, induced through the range of experimental
conditions, therefore produced manifestly non-random
networks with a broader, approximately Gaussian, dis-
tribution of local areal densities than their correspond-
ing random networks.

The pore radius distribution was measured using a
capillary flow porometer, model CFP 1500 AEX man-
ufactured by PMI Inc. The instrument automates the
saturated head gas drive technique described by Corte
[13] and conforms to ASTM standards [14]. The instru-
ment was used to record the flow rate of dry nitrogen at
a given pressure and the equations of Corte [13] were
applied to the average pressure-flow response of three
repeats to determine the pore radius distribution; a cir-
cular area of diameter 12 mm was used for each repeat.
As expected, the thickness of the networks was influ-
enced by the fibre type as well as the mean areal density,
though were of order 50 µm, 100 µm and 150 µm for
networks of mean areal density 20 gm−2, 40 gm−2 and
60 gm−2 respectively; for recent studies of the influence
of mass distribution on the distributions of thickness
and density in stochastic fibre networks see Dodson
et al. [15, 16].
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Figure 3 Standard deviation of pore radii plotted against mean pore
radius. The relationship is highly linear and has an intercept close to the
origin.

The in-plane distribution of mass was measured for
each sample using β-radiography and image analy-
sis following the technique described by Ng [17]; for
this study, variability has been quantified as the coeffi-
cient of variation of local areal density, i.e. of mass per
unit area, observed at the 1 mm scale measured within
square zones of side 5 cm.

4. Results and discussion
The standard deviation of pore radii is plotted against
the mean pore radius for all 71 samples analysed in
Fig. 3. In agreement with the observations of Bliesner
[4] for changes in areal density, and those of Corte and
Lloyd for [1] for changes in mass distribution, the data
show a clear proportionality between the standard devi-
ation of pore radius and the mean pore radius, which in
turn decreases with increasing mean areal density. Im-
portantly however, the data show that changes in mean
areal density and the distribution of areal density cause
the mean and standard deviation of pore radius to move
along the same line; also, for our fibres of similar width,
but with different mean lengths and linear densities,
the proportionality is insensitive to fibre morphology.
A linear regression on the data presented in Fig. 3 gives

σ (r ) = 0.462 r̄ + 0.233 (16)

with a coefficient of determination of 0.978. So for our
data we have the estimate of σ0(r ) = 0.233 compared
with a value of −2.525 for the data of Bliesner and
−10.498 for the data of Corte and Lloyd. Thus, for our
data we have positive σ0(r ) which implies therefore
that processes that increase the mean pore radius will
decrease the coefficient of variation of pore radii. This
is illustrated in Fig. 4 where the dotted lines represent
log-linear regressions on the data at 40 gm−2, 60 gm−2

and the two groups of data at 20 gm−2 and are intended
to be illustrative only; the broken horizontal line rep-
resents the mean coefficient of variation of pore radii
observed across all data sets. Although the data shows
the coefficient of variation of pore radii to decrease with
increasing mean pore radii at a given mean areal den-
sity, the overall range is within ±50% of the mean and

Figure 4 Coefficient of variation of pore radii plotted against mean pore
radius. At a given mean areal density, increases in mean pore radii are as-
sociated with a decrease in coefficient of variation of pore radii. The
decrease is however weak, and may be attributed to an artefact in the
measuring system.

does not therefore represent a particularly large scatter.
Also, the data for each fibre type within these groups
exhibit a very narrow range of coefficients of variation
of pore radii. The strongest trend in Fig. 4 is observed
for the TMP fibres at a mean areal density of 20 gm−2

where there is a very broad range of mean pore radii.
This may be attributable to the occurrence of pinholes
or “through-pores” in the networks which could be eas-
ily observed in the samples and arise as a consequence
of the high linear density of the fibres, which in turn
reduces the number of fibres per unit area. Thus, to a
first approximation, the coefficient of variation of pore
radii appears insensitive to changes in the mean pore
radius.

Naturally, from the discussion of the theory given
above, we expect the intercept σ0(r ) = 0 and hence the
coefficient of variation of pore radii to be constant. The
non-zero intercept obtained for our samples is therefore
presumably an artefact of the measuring system and in-
dicates that the equipment slightly underestimates pore
radii. Conversely, the systems used by Corte and Lloyd
and Bliesner, whilst based on the same measuring prin-
ciples, have seemingly overestimated pore radii. The
fact that our data yields an intercept closer to the origin

Figure 5 Coefficient of variation of pore radii plotted against coefficient
of variation of local areal density. The horizontal line represents the mean
coefficient of variation of pore radii for all samples.
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is likely to be due to the greater experimental control
and automation available through advances in technol-
ogy. It is likely that the underestimate observed for our
data arises from the implicit assumption in the theory
associated with with the measurement technique, that
pores are cylindrical.

The coefficient of variation of pore radii is plotted
against that of the local areal density as measured by
β-radiography at the 1 mm scale in Fig. 5. Here the
insensitivity of the pore radius distribution to the mass
distribution is readily apparent, there being no clear
correlation for the whole data set or for classes of data
grouped by fibre type or mean areal density.

5. Conclusions
Experimental data has been presented confirming the
well established linear relationship between the stan-
dard deviation of pore radii and the mean pore radius in
near-planar stochastic fibre networks. Unlike previous
studies, a linear regression on the data has an inter-
cept close to the origin suggesting that, to a first ap-
proximation, the coefficient of variation of pore radii in
stochastic fibre networks is constant for changes in the
mean number of fibres per unit area and in the unifor-
mity of their distribution in the plane. Theoretical con-
sideration of the lognormal and gamma distributions,
which are known to describe the pore radius distribu-
tion well in a range of stochastic porous media, show
that they allow for a constant coefficient of variation of
pore radii.
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